skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Renjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the 1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR Time Series Anomaly Archive. We believe that this resource will perform a similar role as the UCR Time Series Classification Archive, by providing the community with a benchmark that allows meaningful comparisons between approaches and a meaningful gauge of overall progress 
    more » « less
  2. Since its introduction two decades ago, there has been increasing interest in the problem of early classification of time series . This problem generalizes classic time series classification to ask if we can classify a time series subsequence with sufficient accuracy and confidence after seeing only some prefix of a target pattern. The idea is that the earlier classification would allow us to take immediate action, in a domain in which some practical interventions are possible. For example, that intervention might be sounding an alarm or applying the brakes in an automobile. In this work, we make a surprising claim. In spite of the fact that there are dozens of papers on early classification of time series, it is not clear that any of them could ever work in a real-world setting. The problem is not with the algorithms per se but with the vague and underspecified problem description. Essentially all algorithms make implicit and unwarranted assumptions about the problem that will ensure that they will be plagued by false positives and false negatives even if their results suggested that they could obtain near-perfect results. We will explain our findings with novel insights and experiments and offer recommendations to the community 
    more » « less